

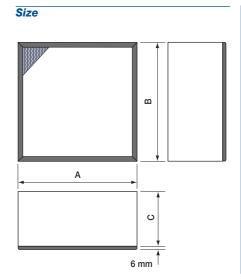
LR - KR

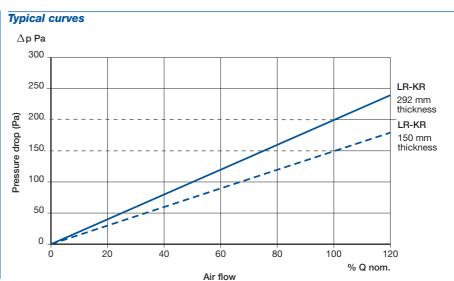
BETA series semi-absolute filters for duct flows

Product	LR	KR	
MPPS efficiency	≥ 85	≥ 85	
CEN EN 1822 classification	H 10	H 10	
Suggested final pressure drop	600 Pa	600 Pa	
Maximum pressure drop	1000 Pa	1000 Pa	
Maximum operating temperature	90 °C	100 °C	
Maximum relative humidity	90 %	100 %	

LR – KR BETA semi-absolute filters offer very high filtration efficiency and low pressure drops, hence they allow for limited energy consumption levels in the systems.

The LR and KR filter medium is made of deep pleated glass micro-fiber paper fitted with corrugated aluminium spacers; it is fixed to the frame through an elastomeric sealant. LR filters have an MDF wood frame, whereas KR filters have a galvanized steel frame. All the models have high dust holding capacity and offer considerable mechanical resistance.


Applications


LR – KR filters are used in all civil, industrial and processing facilities which require high air cleanness levels, but not so high as to need absolute filters. Luxury residential rooms, food, chemical, pharmaceutical, photographic, mass consumption electronic, precise mechanical applications, etc., are just a few examples of the typical use of these filters. Furthermore, they are also used in libraries, museums, art galleries, gold-working laboratories and in several other prestigious and precise industrial and craftsmanship industries.

Installation LR – KR filters need to fitted with pre-filters to maintain high operating life levels. They can be installed for both downward horizontal and vertical air flows. These filters are installed in CT 50 counterframes, Modulo or in safety housings Canister type, the latter for air that transports toxic substances or pathogens.

Type	Sizes (mm)		Nominal ai	Nominal air flow rate Q.		Initial			
						_		surface	pressure drop
LR - KR	Α		В		С	m³/h	m³/sx10 ⁻³	m²	Pa
3	305	х	305	Х	149	400	111	2	150
42	305	Х	610	Х	149	800	222	4	150
4	610	Х	610	Х	149	1700	472	8	150
31	305	Х	305	Х	292	800	222	4	200
52	305	Х	610	Х	292	1700	472	8	200
54	595	Х	595	Х	292	3200	889	16	200
5	610	Х	610	Х	292	3400	944	17	200
6	610	Х	762	Х	292	4000	1111	21	200

^{*1} $m^3/s \times 10^{-3} = 1 l/s$

