

LMR - KMR - LNR - NR

BETA series semi-absolute filters for duct flows

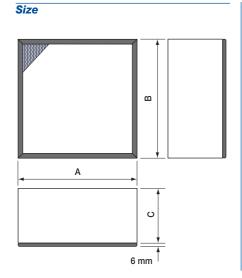
Product	LMR	KMR	LNR	NR
Efficiency MPPS	≥ 85	≥ 85	≥ 85	≥ 85
CEN EN 1822 Class	H 10	H 10	H 10	H 10
Final pressure drop	600 Pa	600 Pa	600 Pa	600 Pa
Max. pressure drop	1000 Pa	1000 Pa	1000 Pa	1000 Pa
Max. operating temperature	70 °C	70 °C	70 °C	70 °C
Max. relative humidity	90 %	100 %	90 %	100 %

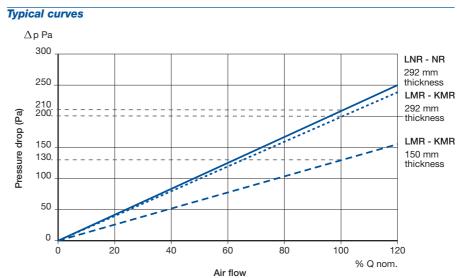
LMR-KMR-LNR BETA semi-absolute filters have a very high filtration efficiency with low pressure drops and this assures a low energy consumption in the operation of the plants. LRN and KRN filters have a fiber glass filtering medium, with mini pleats and continuous thermal-plastic spacers.

It is fixed to the frame with an elastomer sealant. LNR and NR filters are different from the previous models because they are multi-dihedral type. LMR-LNR filters have an MDF frame, whereas KMR-NR filters have a galvanized steel frame.

All the models have a high dust holding capacity and strong mechanical resistance.

Applications


LMR-KMR-LNR-NR filters are applied in civil and industrial plants and in processing plants which require high air cleanness, but so high for absolute filters. Prestigious civil environments, food, chemical, pharmaceutical, photography, consumer electronics, mechanics industries, etc. are the typical places where these filters are installed. They are also used in libraries, museums, art


galleries, goldsmith laboratories and in various other industrial and handicraft industrial activities.

Installation The installation of LMR-KMR-LNR-NR filters require pre-filters to keep the operating life high. They can be installed for horizontal or vertical air flows, downwards. These filters can be installed using CT 50 counter-frames, Modulo or Canister containers. The latter are especially used for air carrying toxic substances or pathogens.

Туре	Sizes (mm)					Nominal ai	r flow rate Q.	Filtering surface	Initial pressure drop	
LMR - KMR	Α		В		С	m³/h	m ³ /sx10 ^{-3*}	m²	Pa	
3	305	Х	305	Х	149	400	111	2	130	
42	305	Х	610	Х	149	800	222	4	130	
4	610	Х	610	Х	149	1700	472	8	130	
31	305	Х	305	Х	292	800	222	4	200	
52	305	Х	610	Х	292	1700	472	8	200	
54	595	Х	595	Х	292	3200	889	16	200	
5	610	Х	610	Х	292	3400	944	17	200	
6	610	Х	762	Х	292	4000	1111	21	200	
LNR - NR										
52	305	Х	610	Х	292	1900	528	11	210	
5	610	Х	610	Х	292	4000	1111	23	210	
6	610	Х	762	Х	292	5000	1389	30	210	

^{*1} $m^3/s \times 10^{-3} = 1 l/s$

