

PFO/E - PFO/S - PFO/H

GAMMA series pleated synthetic filter screens

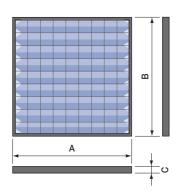
Product	PFO/E	PFO/S	PFO/H
UNI EN 779 class	G 3	G 4	G 4
EUROVENT class	EU 3	EU 4	EU 4
Am ASHRAE 52.1.1992	84 %	92 %	94 %
Suggested final pressure drop	200 Pa	200 Pa	200 Pa
Maximum pressure drop	250 Pa	250 Pa	250 Pa
Maximum operating temperature	90 °C	90 °C	90 °C
Maximum relative humidity	100%	100%	100%

PFO/E – PFO/S – PFO/H pleated filters have good filtration efficiency levels for average size particles and high holding capacities, besides having a robust construction. The synthetic fiber medium is positioned in a pleated way to offer a bigger filtration surface, face sizes being equal. The pleated medium furthermore assure a higher dust build-up level. The frame is in galvanized steel sheet and it is held between two electrically welded galvanized steel holding grids. Pressure varies according to the type of filter and the thickness. The regenerable medium allows you to use the filters for a long time, thus reducing management costs.

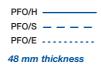
Pleated filters are available in several sizes and air flow rates that meet the various needs of commercial civil use.

Applications PFO/E – PFO/S – PFO/H pleated filters offer a wide range of uses:

- ventilation units, thermal fans and hot air generators for civil and industrial facilities
- as first filtration stage in air treatment units and independent roof top conditioners upstream of high efficiency or activated carbon filters
- independent close control conditioners
- filtration walls for big tertiary building systems


Installation PFO/E – PFO/S – PFO/H pleated filters are installed in U-shaped guides that make them very stable and make them easily removable for cleaning operations. PFO/E – PFO/S – PFO/H pleated filters can be installed in two ways:

- flat, for low face speeds, up to 2.5 m/s
- V-position, for face air speeds up to 3.5 m/s. They can be installed both vertically and horizontally, or in proper counter-frames (CT 10...) which hold and lock the filters in position through return springs.


Type	Sizes (mm)				Nominal air flow rate Q.		Filter.	Initial pressure drop			
PFO	Α		В		С	m³/h	m ³ /sx10 ^{-3*}	surface m²	PFO/E	Pa PFO/S	PFO/H
E/S/H	287	х	592	х	48	1400	389	0,32	50	70	90
E/S/H	400				48		175			70	90
		Х	400	Х		1350		0,30	50		
E/S/H	400	Х	500	Χ	48	1650	458	0,38	50	70	90
E/S/H	400	Х	625	Х	48	2100	583	0,47	50	70	90
E/S/H	500	Х	500	Х	48	2100	583	0,47	50	70	90
E/S/H	500	Х	625	Х	48	2600	722	0,58	50	70	90
E/S/H	490	Х	592	Х	48	2400	667	0,53	50	70	90
E/S/H	592	Х	592	Х	48	3000	833	0,66	50	70	90
E/S/H	610	Х	610	Х	48	3100	861	0,68	50	70	90
E/S/H	287	Х	592	Х	98	2000	555	0,51	60	90	110
E/S/H	400	Х	400	Х	98	1850	513	0,48	60	90	110
E/S/H	400	Х	500	Х	98	2300	639	0,60	60	90	110
E/S/H	400	Х	625	Х	98	2900	805	0,75	60	90	110
E/S/H	500	Х	500	Х	98	2900	805	0,75	60	90	110
E/S/H	500	Х	625	Х	98	3700	1028	0,93	60	90	110
E/S/H	490	Х	592	Х	98	3330	925	0,87	60	90	110
E/S/H	592	Х	592	Х	98	4200	1166	1,05	60	90	110
*1 m3/s v 10-3 - 1 l/s											


^{*1} $m^3/s \times 10^{-3} = 1 l/s$

Size

Typical curves

filtration