

TB - TC

DELTA series high temperature absolute filters

Product	TB	TC
MPPS efficiency*	99,5 %	95 %
CEN EN 1822 classification	H 12	H 11
Suggested final pressure drop	600 Pa	600 Pa
Maximum pressure drop	1000 Pa	1000 Pa
Operating temperature/ Maximum resistance	245 °C	25 / 500 °C
Maximum relative humidity	100 %	100 %
Pleats filtration pack	Deep	Deep

* Average efficiency

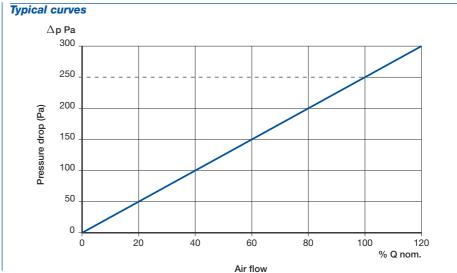
Absolute TB Delta filters and TC semi-absolute filters are deep-pleated and are mainly used for high temperature operating and even in fire risk applications (TC). The frame is in stainless steel and the spacers are made of aluminium; the TB models for high temperature operation use silicon sealants, whereas the TC models use fiber glass sealants. These filters operate in high and very high temperature conditions; they have high mechanical resistance, robust construction, high dust holding capacity and a

long operating life. The frame is made of AISI

304 stainless steel for high temperature TB models and in AlSI 430 for TC models for fire risk applications. Both have a special single piece gasket. All the filters are tested individually and labeled to assure the compliance with the measured features.

Applications TB and TC filters allow for various special applications:

- in systems and sterilization furnaces for pharmaceutical companies (TB)
- in fire risk applications (TC)


- in Canister systems to assure the required emission levels of exhausted air
- in rooms with fire emergency requirements

Installation No matter what is the installation position, TB – TC filters always allow for the use of the entire filtration surface. We suggest installing the proper high-efficiency pre-filters to increase their operating life. On request we also supply frames and housings to improve and simplify the installation of the filters.

Type		S	Sizes (mm)			N	Nominal air flow rate Q.			Filtering		Initial
TB							TC	TB	TC	surfa	ce m²	pressure drop
TC	Α	А В С		m ³	m³/h		m ³ /sx10 ^{-3*}		TC	Pa		
_										_		
3	305	Х	305	Х	149	250	-	69	-	3	-	250
42	305	Х	610	Х	149	500	-	139	-	5	-	250
4	610	Х	610	Х	149	1000	-	278	-	11	-	250
7	610	Х	762	Х	149	1250	-	347	-	13	-	250
31	305	Х	305	Х	292	500	-	139	-	6	-	250
52	305	Х	610	Х	292	1000	1000	278	278	11	10	250
5	610	Х	610	Х	292	2000	2000	555	555	23	19	250
6	610	Х	762	Х	292	2500	-	694	-	28	-	250

^{*1} $m^3/s \times 10^{-3} = 1 l/s$

A

